

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 1C and Science (Double Award) (4SD0) Paper 1C

Question number	Ansv	ver	Notes	Marks
1 (a)			Award 1 mark for each	3
	Start	End	correct row	
	solid	liquid		
	solid	gas	ALLOW gas to solid for sublimation	
	gas	liquid		
	liquid	gas		
(b)	A description that refers to following points	o any three of the		3
	M1 irregular /random arra	ingement (of particles)		
	M2 large gaps between the spaced	em /far apart /widely	ALLOW spread out	
	M3 random movement / n	nove freely		
	M4 move (very) quickly		IGNORE references to	
			kinetic energy	
				6 marks

Question number	Answer	Notes	Marks
2 (a) (i)	A		1
	A is the correct answer because 100°C is above the boiling point of W		
	B is not the correct answer because X is a solid at 100°C		
	C is not the correct answer because Y is a solid at 100°C		
	D is not the correct answer because Z is a solid at 100°C		
(ii)	В		1
	B is the correct answer because X is a liquid for 1840°C		
	A is not the correct answer because W is a liquid for 67°C		
	C is not the correct answer because Y is a liquid for 1150°C		
	D is not the correct answer because Z is a liquid for 330°C		
(iii)	С		1
	C is the correct answer because Y is a liquid at 1000°C and a gas at 2000°C		
	A is not the correct answer because W is a gas at 1000°C and at 2000°C		
	B is not the correct answer because X is a liquid at 1000°C and 2000°C		
	D is not the correct answer because Z is a gas at 1000°C and at 2000°C		
(b)	ionic	ALLOW electrovalent	1
(c)	the (impure) substance will melt over a range of temperatures	ALLOW the (impure) substance will have a lower melting point	1
			5 marks

Questio number		Answer	Notes	Marks
3 (a)	(i)	M1 dissolving M2 diffusion	Answers can be in either order	2
(b)	(i)	An explanation that links any two of the following points		2
		M1 crystals dissolve faster	ALLOW (notassium	
		M2 (potassium iodide/ lead nitrate/ water) particles move faster / (lead/ iodide) ions move faster / rate of diffusion increases	ALLOW (potassium iodide /lead nitrate/ water) particles have more energy	
			ALLOW molecules in place of particles if referring to water	
		M3 therefore (lead and iodide) ions/ particles meet / collide after a shorter period of time/ sooner	IGNORE references to more collisions or more energetic collisions	
(c)	(i)	3 / three		1
(i	ii)	2+ /+2	ALLOW Pb ²⁺	1
(d)		$Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$	ALLOW multiples and fractions	1
				7 marks

Question number	Answer	Notes	Marks
4 (a)	Example calculation M1 (volume of oxygen =) 100 – 25 OR 75 (cm ³)	Correct answer of 20.5 % with or without working scores 3	3
	M2 75 ÷ 365 × 100	ALLOW ecf from M1	
	M3 20.5 (%)	ALLOW ecf from M2	
		ALLOW 2 or more significant figures	
		REJECT incorrect rounding Use of 265 instead of 365 gives an answer of 28.3 and scores 2	
		Alternative method	
		M1 (volume of air left =) 265 + 25 OR 290 (cm ³)	
		M2 290 ÷ 365 × 100 OR 79.5 (%)	
		M3 (100 – 79.5 =) 20.5 (%)	
(b) (i)	M1 paint provides a barrier	ALLOW paint forms a coating (on the iron) / paint is non-permeable	2
	M2 which prevents oxygen / water getting to /reacting with the iron	ALLOW air	
(ii)	M1 zinc is more reactive/higher in the reactivity series (than iron)	ALLOW zinc is a sacrificial metal	2
	M2 zinc will oxidise / react / corrode instead of /before iron	IGNORE references to zinc rusting	
		IGNORE references to galvanising	
			7 marks

Question number	Answer	Notes	Marks
5 (a)	filtration simple distillation or fractional distillation fractional distillation crystallisation	ALLOW filtering ALLOW distillation REJECT simple distillation or distillation	4
(b) (i)	M1 A and B $ M2 \ because they are the same height /moved the same distance up the paper / have the same R_f values as the spots in the purple ink$	M2 dep on M1 correct or missing	2
(ii)	M1 D M2 because the spot is closest to the start line /travelled the least distance (from the start line) / has the lowest $R_{\rm f}$ value	M2 dep on M1 correct or missing	2
(c)	Example calculation M1 120 × 0.72 M2 86 / 86.4 (mm)	Correct answer of 86 or 86.4 (mm) with or without working scores 2	2
			10 marks

Question number	Ans	wer	Notes	Marks
6 (a)	precipitate of barium carbonate no precipitate precipitate of calcium carbonate	precipitate of barium sulfate no precipitate precipitate of calcium sulfate	if barium sulfate and calcium carbonate correct but without including 'precipitate of' scores 1 out of 2	3
(b)		to any six of the following	ACCEPT any description of a flame test ACCEPT yellow-orange or	6
	M2 sodium chloride prod M3 add acid M4 potassium carbonate		orange IGNORE any flame colour given for the potassium compounds ALLOW any named acid ACCEPT carbon dioxide/gas given off which turns limewater cloudy for M4	
	M5 add dilute nitric acid M6 add silver nitrate (solution) M7 potassium chloride given	ves a white precipitate	M4 is dep on M3 M7 and M8 are dep on M6	
	M8 potassium iodide give	es a yellow precipitate	ALLOW addition of chlorine/bromine solution as an alternative to M6 M7 no colour change with potassium chloride	

M8 solution turns brown with potassium iodide If this alternative given no M5	
	9 marks

Question number	Answer	Notes	Marks
7 (a)	M1 two lithium atoms each lose one electron /give one electron to oxygen M2 oxygen gains two electrons	ALLOW lithium loses one electron /gives one electron to oxygen	3
	M3 lithium (ion) has an electron configuration of 2 and oxide (ion) is 2,8	ALLOW oxygen becomes 2,8	
		All 3 marks can be scored from diagrams showing the electron configurations of the ions	
		0 marks if reference to sharing electrons	
(b) (i)	M1 (temperature after) = 27.7°C		2
	M2 temperature rise = 10.4 °C	ALLOW ecf from M1	
(ii)	Example calculation	Correct answer of 4400J with or without working scores 4	4
	M1 Use of 100 in Q = m x c (x Δ T)		
	M2 Use of 10.4 in Q = (m x) c x Δ T	ALLOW ecf from (b)(i)	
		100 x 4.2 x 10.4 scores M1 and M2	
	M3 4368J	ALLOW ecf from M1 and M2	
	M4 4400J	ALLOW ecf from M3	
		IGNORE + or - sign in front	
(iii)	Example calculation	of answer Correct answer of -89.8 (kJ/mol) scores 3	3
	M1 5210 ÷ 1000 or 5.21	(KJ/IIIOL) SCOLES 3	
	M2 5.21 ÷ 0.0580		
	M3 -89.8(kJ/mol)	ALLOW -90 (kJ/mol) or any number of sig figs as long as correctly rounded.	
(iv)	polystyrene is a good insulator /poor conductor (of heat) OR to minimise/reduce heat loss	ALLOW prevent heat loss	1
	<u>I</u>		13 marks

Question number	Answer	Notes	Marks
8 (a)	M1 solid M2 dark grey / black		2
(b) (i)	Example calculation M1 (51 × 79) + (49 × 81) OR 7998 M2 7998 ÷ 100	80.0 with no working scores 3	3
	M3 80.0	79.9 with no working scores 1 79.98 or 80 with no working scores 2	
(ii)	same electron configuration	ALLOW same (total) number of electrons IGNORE same number of electrons in the outer shell IGNORE references to same number of protons	1
(c) (i)	An explanation that links the following three points M1 the order of reactivity is chlorine (most), bromine and iodine (least) M2 chlorine (is most reactive because it) displaces bromine and iodine/ oxidises bromide and iodide (ions) / reacts with sodium bromide and sodium iodide M3 bromine (is less reactive than chlorine since it) only displaces iodine / only oxidises iodide (ions) / only reacts with sodium iodide	ACCEPT bromine is only displaced by chlorine and iodine is displaced by chlorine and bromine scores M2 and M3 ALLOW chlorine has two reactions, bromine has one reaction and iodine no reactions for 1 mark out of M2 and M3 Deduct 1 mark for incorrect use of ine	3

		and ide e.g. bromine displaces iodide	
(ii)	bromine cannot displace itself / bromine does not react with sodium bromide OWTTE	ALLOW there would be no reaction	1
(iii)	M1 bromine is reduced and iodide (ions)/l- is oxidised M2 bromine gains electrons and iodide (ions)/l- loses electrons OR	Deduct 1 mark for mention of iodine (ions) being oxidised or losing electrons	
	M1 bromine gains electrons so is reduced M2 iodide (ions) /l ⁻ loses electrons so is oxidised	REJECT iodine (ions) loses electrons so is oxidised	

12 marks

Question number	Answer	Notes	Marks
9 (a)	M1 (propane/it) contains hydrogen and carbon (atoms)	REJECT carbon and hydrogen molecules	2
	M2 only	M2 is dependent on mention of just carbon and hydrogen in M1	
(b) (i)	carbon monoxide	ALLOW CO	1
(ii)	it decreases the capacity of the blood to transport oxygen OWTTE	ALLOW carbon monoxide binds to haemoglobin	1
(c)	M1 (strong electrostatic) attraction between (bonding) pair of electrons		2
	M2 (and) nuclei (of both atoms)	REJECT nucleus	
	OR		
	M1 (bonding) pair of electrons		
	M2 attracted to nuclei	REJECT nucleus	
		0 marks if reference to intermolecular forces between atoms	
(d)	An explanation that links the following three points		3
	M1 (crude oil) produces more long chain hydrocarbons than can be used directly OWTTE	ALLOW less demand for long chain hydrocarbons	
	M2 shorter chain alkanes are more flammable /more useful as fuels	ALLOW shorter chain alkanes/hydrocarbons are more useful	
	M3 alkenes are used to make polymers / plastics		
(e) (i)	M1 C ₃ H ₇ Br		2
	M2 HBr	ALLOW polysubstituted product if correct balancing number in front of Br ₂ and HBr	
(ii)	substitution		1

Question number	Answer	Notes	Marks
10 (a) (i)	curve of best fit	REJECT dot to dot line	1
(ii)	M1 lines shown on graph	ALLOW extra point on curve at 7 carbon atoms	2
	M2 value correctly read from graph (expected value between 97 and 103°C)	ACCEPT value to <u>+</u> 1°C	
(iii)	An explanation that links the following three points		3
	M1 the boiling point increases as the number of carbons / the chain length increases	ALLOW boiling point increases as the M _r increases	
	M2 because the intermolecular forces (of attraction) get stronger	REJECT directly proportional	
	M3 and therefore take more energy to overcome / break		
	bicar	M3 dep on M2	
		Any mention of breaking covalent bonds does not score M2 or M3	
(b)	M1 same molecular formula		2
	M2 different displayed / structural formulae	ALLOW different structures/ different arrangement of atoms	
(c) (i)	M1 82.8 ÷ 12 or 6.9	0 marks if upside down	2
	17.2 ÷ 1 or 17.2	calculation or use of atomic numbers	
	M2 (divide by smallest to give) 1:2.5 which is 2:5	ACCEPT alternative methods	
(ii)	C ₄ H ₁₀		1

(d)	M1 moles of $CO_2 = 7$ or $X = 7$		3
	M2 moles of $H_2O = 8$ or $Y = 8$		
	M3 balancing number = 11 or Z = 11	ALLOW ecf from incorrect values of X and Y	
			14 marks

Question Notes Marks **Answer** number 11 (a) (i) glowing splint relights **REJECT** burning splint 1 (ii) A description that refers to the following three 3 points M1 filter out manganese(IV) oxide / solid M2 leave to dry M3 same mass/ 1g of manganese(IV) oxide / solid M1 280 ÷ 120 (b) (i) 2 M2 2.33 **ALLOW** ecf from M1 **ALLOW** any number of significant figures except An explanation that links the following three points (ii) 3 M1 the concentration of hydrochloric acid is **ALLOW** the surface area greatest of zinc is greatest **ALLOW** greatest number of/more particles (of hydrochloric acid/ zinc) M2 therefore there are more collisions More frequent collisions 2 scores M2 and M3 M3 per unit time Max 1 if incorrect reference to energy (iii) M1 curve above original and starts at 0 M2 curve goes flat at same volume (410cm³)

(iv)	M1 greater surface area		2
	M2 more collisions per unit time / more frequent collisions		
(c)	M1 8.46 × 10 ⁻³ mol of zinc	ALLOW any number of sig figs including one e.g.	2
	M2 therefore 1.69×10^{-2} mol hydrochloric acid needed (which is less than 2.50×10^{-2} mol)	0.008 moles of zinc, therefore 0.016 moles of acid needed scores M1	
	OR	and M2	
	M1 1.25 × 10 ⁻² mol of zinc are needed		
	M2 therefore 0.8(13) g of zinc is needed (and there is only 0.55g)		
			15 marks